ANTIBIOTIC.ru 

Р. Я. МЕШКОВА

РУКОВОДСТВО ПО ИММУНОПРОФИЛАКТИКЕ ДЛЯ ВРАЧЕЙ


Содержание | Виртуальная библиотека | Главная страница
Введение Вакцинация пациентов с отягощенным анамнезом. Рекомендуемые вакцины Прививочные реакции и осложнения
Иммунологические механизмы
противоинфекционной защиты
Тактика лечения детей с различной патологией до и после вакцинации Противопоказания к вакцинации
Вакцины, состав, техника вакцинации, вакцинные препараты. Разработка новых видов вакцин Некоторые аспекты иммунизации
взрослых
Приложение 1
Приложение 2
Стратегия вакцинации в России и других странах мира. Графики иммунизации Неотложные лечебные мероприятия при развитии поствакцинальных осложнений Словарь терминов
Список литературы

3. 

ВАКЦИНЫ, СОСТАВ, ТЕХНИКА ВАКЦИНАЦИИ, ВАКЦИННЫЕ ПРЕПАРАТЫ. РАЗРАБОТКА НОВЫХ ВИДОВ ВАКЦИН

В качестве вакцин используются антигены разного происхождения, это могут быть живые и убитые бактерии, вирусы, анатоксины, а также антигены, полученные с помощью генной инженерии и синтетические.

От состава вакцин во многом зависят их иммунобиологические свойства, способность индуцировать специфический иммунный ответ. Однако некоторые составные части вакцин могут вызвать и нежелательные реакции, что следует учитывать при проведении иммунизации.

Существующее многообразие вакцин можно подразделить на две основные группы: на живые и убитые (инактивированные) вакцины. В свою очередь какждая из этих групп может быть разделена на подгруппы [11].

1. Живые вакцины - из аттенуированных штаммов возбудителя (штаммы с ослабленной патогенностью).

2. Убитые вакцины
- Молекулярные, полученные путем:
а) биологического синтеза;
б) химического синтеза.
- Корпускулярные:
а) из цельных микробов;
б) из субклеточных надмолекулярных структур.

В последние годы созданы синтетические молекулярные вакцины, а так же плазмидные (генные) вакцины.

Постановка вопроса о предпочтительном выборе либо живых, либо убитых вакцин нам кажется неоправданной, так как в каждом конкретном случае эти принципиально разные препараты имеют свои преимущества и свои недостатки.

Традиционные вакцины

а) инактивированные

Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не трубуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз (бустерные иммунизации).

б) живые аттенуированнные

Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

в) анатоксины

Многие микроорганизмы, вызывающие заболевания у человека, опасны тем, что выделяют экзотоксины, которые являются основными патогенетическими факторами заболевания (например, дифтерия, столбник). Анатоксины, используемые в качестве вакцин, индуцируют специфический иммунный ответ. Для получения вакцин токсины чаще всего обезвреживают с помощью формалина.

Ниже (табл. 15) приведена сравнительная характеристика вакцин [11], из которой следует, что инактивированные вакцины более стабильны, менее реактогенны, на их основе можно конструировать многокомпонентные вакцины, хотя в то же время по иммуногенности они уступают живым вакцинам.


Таблица 15. Факторы, влияющие на иммунный ответ на антиген

Характеристика Убитые (химические) Живые
Иммуногенность ++ +++
Реактогенность +(+) ++(+)
Опасность поствакцинальных осложнений:
  онкогенная
  заражение микробами-контаминантами
 
0
0
 
+(–)
++
Стандартность ++ +
Возможность применения стимуляторов (адъювантов) +++ 0
Возможность применения в ассоциированных препаратах +++ +(+)
Стабильность при хранении +++ +
Возможность применения массовых методов иммунизации ++ ++(+)
Возможность массового производства +(+) ++

Примечания: 0> - признак не выражен, +> - слабо выражен, ++ - выражен, +++ - сильно выражен, (+) - тенденция в сторону усиления признака.

Новое поколение вакцин

Использование новых технологий позволило создать вакцины второй генерации.

Рассмотрим подробнее некоторые из них:

а) конъюгированные

Некоторые бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию (гемофилюс инфлюэнце, пневмококки), имеют антигены, трудно распознаваемые незрелой иммунной системой новорожденных и грудных детей. В конъюгированных вакцинах используется принцип связывания таких антигенов с протеинами или анатоксинами другого типа микроорганизмов, хорошо распознаваемых иммунной системой ребенка. Протективный иммунитет вырабатывается против конъюгированных антигенов.

На примере вакцины против гемофилюс инфлюэнце (Hib-b) показана эффективность в снижении заболеваемости Hib-менингитами детей до 5-ти лет в США за период с 1989 по 1994 г.г. с 35 до 5 случаев.

б) субъединичные вакцины

Субъединичные вакцины состоят из фрагментов антигена, способных обеспечить адекватный иммунный ответ. Эти вакцины могут быть представлены как частицами микробов, так и получены в лабораторных условиях с использованием генно-инженерной технологии.

Примерами субъедиинчных вакцин, в которых используются фрагменты микроорганизмов, являются вакцины против Streptococcus pneumoniae и вакцина против менингококка типа А.

Рекомбинантные субъединичные вакцины (например, против гепатита B) получают путем введения части генетического материала вируса гепатита B в клетки пекарских дрожжей. В результате экспрессии вирусного гена происходит наработка антигенного материала, который затем очищается и связывается с адъювантом. В результате получается эффективная и безопасная вакцина.

в) рекомбинантные векторные вакцины

Вектор, или носитель, - это ослабленные вирусы или бактерии, внутрь которых может быть вставлен генетический материал от другого микроорганизма, являющегося причинно-значимым для развития заболевания, к которому необходимо создание протективного иммунитета. Вирус коровьей оспы используется для создания рекомбинантных векторных вакцин, в частности, против ВИЧ-инфекции. Подобные исследования проводятся с ослабленными бактериями, в частности, сальмонеллами, как носителями частиц вируса гепатита B.  В настоящее время широкого применения векторные вакцины не нашли.


3.1. Компоненты вакцин

Как известно, основу каждой вакцины составляют протективные антигены, представляющие собой лишь небольшую часть бактериальной клетки или вируса и обеспечивающие развитие специфического иммунного ответа. Протективные антигены могут являться белками, гликопротеидами, липополисахаридобелковыми комплексами. Они могут быть связаны с микробными клетками (коклюшная палочка, стрептококки и др.), секретироваться ими (бактериальные токсины), а у вирусов располагаются преимущественно в поверхностных слоях суперкапсида вириона [11].

Поскольку для создания вакцин необходимо получение протективного антигена в достаточных количествах, то, прежде всего, нарабатываются большие объемы биомассы (культивируемые бактерии, вирусы). Далее производится выделение и очистка протективного антигена, причем в зависимости от условий это может быть как живая биомасса, так и инактивированная. Для инактивации используют формалин, фенол, перекись водорода, тепло, УФО-облучение и т.д.

Выделение и очистка протективного антигена также сопряжены с физическими или химическими методами воздействия, что определяется в основном свойствами антигена. Это могут быть методы изоэлектрического осаждения кислотами и щелочами, высаливание нейтральными солями, осаждение спиртом, сорбция и элюция, ультрафильтрация, колоночная хроматография и т.д.

Важно, что при всех указанных действиях должна максимально сохраняться первоначальная структура протективного антигена и в то же время должна быть получена максимальная степень чистоты препарата [11].

Несмотря на постоянное совершенствование вакцин, существует целый ряд обстоятельств, изменение которых в настоящий момент невозможно. К ним относятся следующие: добавление к вакцине стабилизаторов, наличие остатков питательных сред, добавление антибиотиков и т.д. Известно, что вакцины могут быть разными и тогда, когда они выпускаются разными фирмами. Кроме того, активные и инертные ингредиенты в разных вакцинах могут быть не всегда идентичными (для одинаковых вакцин).

Консерванты, стабилизаторы, антибиотики

Эти компоненты вакцин, анатоксинов и иммуноглобулинов используются для ингибиции и предотвращения роста бактерий в вирусных культурах, для стабилизации антигенов. Для лиофилизации используют лактозу, сахарозу, человеческий альбумин, мальтозу и др. В качестве консервантов наиболее часто в отечественных вакцинах используют меркуротиолят (мертиолят или тимеросал), стабилизатора - раствор хлористого магния. Наряду с этим в зарубежных вакцинах используют формальдегид, гидрометиламинометан, фенол, феноксиэтанол и др.

Аллергические реакции могут иметь место, если реципиент чувствителен к одной из этих добавок (тимеросал или мертиолят, фенолы, альбумин, глицин, неомицин).

Растворители вакцин

В качестве растворителей могут использоваться стерильная вода, физиологический раствор, раствор, содержащий протеин или другие составляющие, происходящие из биологических жидкостей - сывороточные протеины.

Адъюванты

Многие антигены вызывают субоптимальный иммунологический ответ. Усиление иммуногенности включает связывание антигенов с различными субстанциями или адъювантами (например, фосфат алюминия или гидроокись алюминия).

При создании вакцин учитывается способ их введения. Так, в препаратах для парентерального введения целесообразно использование адъювантов и консервантов, а для энтерального применения - кислотоустойчивое покрытие.

В технологии создания вакцин предусматривается стерилизация растворов антигенов. С этой целью используются термическая обработка, облучение, фильтрация и т.п. Безусловно все эти воздействия не должны повлиять на сохранность протективного антигена и его количество [11].

Таким образом, создание современных вакцин - это высокотехнологичный процесс, использующий достижения во многих отраслях знаний.


3.2. Критерии эффективных вакцин

Актуальной задачей современной вакцинологии является постоянное совершенствование вакцинных препаратов. Эксперты международных организаций по контролю за вакцинацией разработали ряд критериев эффективных вакцин, которые соблюдаются всеми странами-производителями вакцин. Перечислим некоторые из них (Табл. 16)


Таблица 16. Некоторые критерии эффективных вакцин
(Janeway C.A., et al., 1996)

Безопасность Вакцины не должны быть причиной заболевания или смерти
Протективность Вакцины должны защищать против заболевания, вызываемого "диким" штаммом патогена
Поддержание протективного иммунитета Защитный эффект должен сохраняться в течение нескольких лет
Индукция нейтрализующих антител Нейтрализующие антитела необходимы для предотвращения инфицирования таких клеток
Индукция протективных
Т-клеток
Патогены, размножающиеся внутриклеточно, более эффективно контролируются с помощью Т-клеточно-опосредованного иммунитета
Практические соображения Относительно низкая цена вакцины,
легкость применения,
широкий эффект

Другой вопрос, который следует иметь ввиду при реализации любых программ массовых иммунизаций - это соотношение между безопасностью вакцин и их эффективностью. В программах иммунизации детей против инфекций имеется конфликт между интересом индивидуума (вакцина должна быть безопасна и эффективна) и интересом общества (вакцина должна вызывать достаточный протективный иммунитет). К сожалению, на сегодняшний день в большинстве случаев частота осложнений вакцинации тем выше, чем выше ее эффективность. Авторы такой концепции приводят соответствующий пример - эффективной, но довольно реактогенной паротитной вакцины, содержащей штамм Urabe Am9, и менее эффективной, содержащей штамм Jeryl Lynn [130]. В результате эксперты по практике иммунизации в США пришли к заключению, что нет "вакцин совершенно безопасных или совершенно эффективных" ("Рекомендации по иммунизации" - ACIP., 1994).

В настоящее время существуют определенные требования к вакцинам:

1. Вакцина должна быть безопасной.
2. Вакцина должна индуцировать протективный иммунитет с минимальными побочными эффектами для большинства получивших ее.
3. Вакцина должна быть иммуногенной, т.е. должна вызывать достаточно сильный иммунный ответ.
4. Вакцина должна индуцировать "правильный" (необходимый) тип иммунного ответа. Когда микроорганизмы проникают в организм человека, они могут вызвать заболевание разными путями, и разные отдела имунной системы отвечают за эффективную борьбу с ними. Вакцины должны стимулировать специфический иммунный ответ, который эффективно защитит от инфекции.
5. Вакцины должны быть стабильны в течение срока хранения. Многие инактивированные вакцины проще для хранения, особенно если они в сухом виде и растворяются перед введением. Живые аттенуированные вакцины для сохранения их стабильности требуют охлаждения на всем протяжении пути от завода-изготовителя до клиники.

3.3. Условия эффективной вакцинации

На сегодняшний день эффективной считается та вакцинация, в результате которой развивается длительная защита вакцинируемого от инфекции. Ряд требований эффективной вакцинации перечисляются ниже.

1. Вакцины должны индуцировать протективный иммунитет в очень высокий пропорции вакцинированных людей.
2. Для поддержания протективного иммунитета необходимо производить бустерные (повторные) вакцинации.
3. Вакцины должны генерировать длительно сохраняющуюся иммунологическую память на соответствующий антиген.
4. Иммунный ответ к инфекционным агентам приводит к синтезу разнообразных антител, направленных к множеству эпитопов. Эпитоп - это часть антигена, специфически распознаваемая антителами, их называют также антигенными детерминантами. Только некоторые из этих антител обеспечивают протективный эффект.
5. Эффективные вакцины должны вести к генерации специфических антител и Т-клеток, направленных на корректные (значимые) эпитопы инфекционных агентов.

© 2000-2007 НИИАХ СГМА Rambler's Top100 TopList Rambler's Top100